多边形内角和定理证明

求学站 人气:1.39W

多边形内角和定理证明

多边形内角和定理证明

证法一:在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形.

因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360°

所以n边形的内角和是n·180°-2×180°=(n-2)·180°.

即n边形的内角和等于(n-2)×180°.

证法二:连结多边形的任一顶点A1与其他各个顶点的线段,把n边形分成(n-2)个三角形.

因为这(n-2)个三角形的内角和都等于(n-2)·180°

所以n边形的内角和是(n-2)×180°.

证法三:在n边形的任意一边上任取一点P,连结P点与其它各顶点的线段可以把n边形分成(n-1)个三角形,

这(n-1)个三角形的内角和等于(n-1)·180°

以P为公共顶点的(n-1)个角的和是180°

所以多边形内角和公式n边形的内角和是(n-1)·180°-180°=(n-2)·180°.